1. Phần bù đại số

Cho ma trận $A=(a_ij)_n imes n$ khi ấy $A_ij=(-1)^i+jM_ij,$ với $M_ij$ là định thức nhận được từ định thức của ma trận $A$ bằng phương pháp bỏ đi cái $i$ cùng cột $j$ được điện thoại tư vấn là phần bù đại số của bộ phận $a_ij.$

Ví dụ 1:Cho ma trận $A = left( eginarray*20c 1&2& - 1&m\ 3&1&4&2\ - 3&4&2&1\ - 1&2&1&3 endarray ight).$

Tính những phần bù đại số $A_11,A_12,A_13,A_14.$

Giải.Bạn sẽ xem: bài bác tập tính định thức cung cấp 4 có lời giảiTa có:

$eginarrayl A_11 = ( - 1)^1 + 1left| eginarray*20c 1&4&2\ 4&2&1\ 2&1&3 endarray ight| = - 35;A_12 = ( - 1)^1 + 2left| eginarray*20c 3&4&2\ - 3&2&1\ - 1&1&3 endarray ight| = - 45;\ A_13 = ( - 1)^1 + 3left| eginarray*20c 3&1&2\ - 3&4&1\ - 1&2&3 endarray ight| = 34;A_14 = ( - 1)^1 + 4left| eginarray*20c 3&1&4\ - 3&4&2\ - 1&2&1 endarray ight| = 7. endarray$

Công thức triển khai Laplace

Cho ma trận $A=(a_ij)_n imes n$ lúc đó

$det (A)=a_i1A_i1+a_i2A_i2+...+a_inA_in ext (i=1,2,...,n)$

đây là bí quyết khai triển định thức ma trận $A$ theo dòng thứ $i.$

$det (A)=a_1jA_1j+a_2jA_2j+...+a_njA_nj ext (j=1,2,...,n)$

đây là công thức khai triển định thức ma trận $A$ theo cùng thứ $j.$

Ví dụ 1: Tính định thức của ma trận $A = left( eginarray*20c 1&2& - 1&m\ 3&1&4&2\ - 3&4&2&1\ - 1&2&1&3 endarray ight)$ theo phương pháp khai triển chiếc 1.

Bạn đang xem: Bài tập tính định thức cấp 4 có lời giải

Giải. Có$det (A)=1.A_11+2.A_12-1.A_13+m.A_14,$ trong số ấy

$eginarrayl A_11 = ( - 1)^1 + 1left| eginarray*20c 1&4&2\ 4&2&1\ 2&1&3 endarray ight| = - 35;A_12 = ( - 1)^1 + 2left| eginarray*20c 3&4&2\ - 3&2&1\ - 1&1&3 endarray ight| = - 45;\ A_13 = ( - 1)^1 + 3left| eginarray*20c 3&1&2\ - 3&4&1\ - 1&2&3 endarray ight| = 34;A_14 = ( - 1)^1 + 4left| eginarray*20c 3&1&4\ - 3&4&2\ - 1&2&1 endarray ight| = 7. endarray$

Vậy $det (A)=-35+2.(-45)-34+7m=7m-159.$

Ví dụ 2: Tính định thức $left| eginarray*20c 1&1&2&2\ - 3&1&5&1\ - 2&5&0&0\ 2& - 1&3& - 1 endarray ight|.$

Giải. Để ý mẫu 3 của định thức tất cả 2 bộ phận bằng 0 nên khai triển theo chiếc này đang chỉ bao gồm hai số hạng

Ví dụ 3: Tính định thức $left| eginarray*20c 0&1&2& - m\ - 2& - 1&2&1\ 0& - 3&4&2\ 0& - 5&1&1 endarray ight|.$

Giải. Để ý cột 1 tất cả 3 thành phần bằng 0 đề nghị khai triển theo cột 1 ta có

Ví dụ 4: Tính định thức

Giải. Để ý cột 3 có bộ phận đầu tiên là 1, vậy ta sẽ đổi khác sơ cấp cho cho định thức theo cột 3


*

Ví dụ 5: Tính định thức $left| eginarray*20c 1&2& - 3&4\ - 1&3&1& - m\ 2& - 4&3&1\ - 3&2&1&2 endarray ight|.$

Giải.

*

Ví dụ 6: Cho ma trận $A = left( eginarray*20c 1&2& - 3&4\ - 1&3&1& - m\ - 2& - 2& - 2& - 2\ - 3&2&1&2 endarray ight).$ Tính tổng những phần bù đại số của các phần tử thuộc dòng 4 của ma trận $A.$

Giải. Thay các bộ phận ở dòng 4 của ma trận A do $-2,$ ta được ma trận $B = left( eginarray*20c 1&2& - 3&4\ - 1&3&1& - m\ - 2& - 2& - 2& - 2\ - 2& - 2& - 2& - 2 endarray ight)$ bao gồm định thức bằng 0 vì có hai mẫu giống nhau với hai ma trận $A,B$ có các phần bù đại số của các phần tử dòng 4 như là nhau.

Vậy $det (B)=-2A_41-2A_42-2A_43-2A_44=0Leftrightarrow A_41+A_42+A_43+A_44=0.$

Ví dụ 7: Cho ma trận $A = left( eginarray*20c 1&2&3&4\ - 2& - 1&4&1\ 3& - 4& - 5&6\ - 4&5& - 6&7 endarray ight).$ Tính $A_41+2A_42+3A_43+4A_44.$

Giải. Thay các bộ phận ở cái 4 của ma trận A lần lượt do $1,2,3,4$ ta được ma trận $B = left( eginarray*20c 1&2&3&4\ - 2& - 1&4&1\ 3& - 4& - 5&6\ 1&2&3&4 endarray ight)$ gồm định thức bằng 0 vì gồm hai cái giống nhau với hai ma trận $A,B$ có những phần bù đại số của các thành phần dòng 4 giống như nhau

Vậy $det (B)=1A_41+2A_42+3A_43+4A_44=0Leftrightarrow A_41+2A_42+3A_43+4A_44=0.$

Ví dụ 8: Cho D là một định thức cung cấp n có tất cả các thành phần của một mẫu thứ i bởi 1. Chứng minh rằng:

Tổng những phần bù đại số của các bộ phận thuộc mỗi cái khác dòng thứ i đều bằng 0.Định thức D bởi tổng phần bù đại số của tất cả các thành phần của nó.

Xem thêm: Nghĩa Của Từ Champion Là Gì ? (Từ Điển Anh Nghĩa Của Từ Champion

Ví dụ 9: Tính định thức $left| eginarray*20c - 2&5&0& - 1&3\ 1&0&3&7& - 2\ 3& - 1&0&5& - 5\ 2&6& - 4&1&2\ 0& - 3& - 1&2&3 endarray ight|.$

Ví dụ 10: Tính định thức $left| eginarray*20c 1& - 2&3&2& - 5\ 2&1&2& - 1&3\ 1&4&2&0&1\ 3&5&2&3&3\ 1&4&3&0& - 3 endarray ight|.$

3. Định thức của ma trận tam giác

Định thức của ma trận tam giác bởi tích các phần tử nằm bên trên đường chéo cánh chính

Thật vậy, so với ma trận tam giác trên khai triển theo cột 1 có:


*

đối với ma trận tam giác bên dưới khai triển theo cái 1.

4. Tính định thức dựa vào các tính chất định thức, công thức khai triển Laplace và đổi khác về ma trận tam giác

Ví dụ 10: Tính định thức $left| eginarray*20c a&b&...&b\ b&a&...&b\ ...&...&...&...\ b&b&...&a endarray ight|.$

Giải. Ta có:

$eginarrayl left| eginarray*20c a&b&...&b\ b&a&...&b\ ...&...&...&...\ b&b&...&a endarray ight|underlineunderline c2 + c3 + ... + công nhân + c1 left| eginarray*20c a + (n - 1)b&b&...&b\ a + (n - 1)b&a&...&b\ ...&...&...&...\ a + (n - 1)b&b&...&a endarray ight|\ = left( a + (n - 1)b ight)left| eginarray*20c 1&b&...&b\ 1&a&...&b\ ...&...&...&...\ 1&b&...&a endarray ight|\ underlineunderline - d_1 + d_i left( a + (n - 1)b ight)left| eginarray*20c 1&b&...&b\ 0&a - b&...&b\ ...&...&...&...\ 0&0&...&a - b endarray ight| = left( a + (n - 1)b ight)(b - b)^n - 1. endarray$

Hiện trên kulturbench.com desgin 2 khoá học tập Toán thời thượng 1 với Toán cao cấp 2 giành cho sinh viên năm nhất hệ Cao đẳng, đại học khối ngành tài chính của tất cả các trường:

Sinh viên những trường ĐH sau đây hoàn toàn có thể học được combo này:

- ĐH kinh tế tài chính Quốc Dân

- ĐH ngoại Thương

- ĐH yêu thương Mại

- học viện Tài Chính

- học viện chuyên nghành ngân hàng

- ĐH kinh tế ĐH non sông Hà Nội

và các trường đại học, ngành kinh tế tài chính của các trường ĐH khác trên khắp cả nước...

Bài viết liên quan

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *