Hướng dẫn Cách giải bất phương trình bậc 2 chứa tham số hay nhất, chi tiết, bám sát nội dung SGK Toán lớp 10, giúp các em ôn tập tốt hơn.

Bạn đang xem: Tìm m để bất phương trình có nghiệm thuộc khoảng lớp 10

*

1. Bất phương trình bậc hai

- Bất phương trình bậc hai ẩn x là bất phương trình dạng ax2 + bx + c 2 + bx + c ≤ 0, ax2 + bx + c > 0, ax2 + bx + c ≥ 0), trong đó a,b,c là những số thực đã cho, a≠0.

* Ví dụ: x2 – 2 >0; 2x2 +3x – 5 2 + bx + c 2 + bx + c cùng dấu với hệ số a (trường hợp a0).

2. Dấu của tam thức bậc hai


*

Nhận xét: 

*

* Định lý: Cho f(x) = ax2 + bx + c, Δ = b2 – 4ac.

– Nếu Δ0 thì f(x) luôn cùng dấu với hệ số a khi x 1 hoặc x > x2 ; trái dấu với hệ số a khi x1 2 trong đó x1, x2 (với x1 2) là hai nghiệm của f(x).

3. Cách xét dấu của tam thức bậc 2

– Tìm nghiệm của tam thức

– Lập bảng xét dấu dựa vào dấu của hệ số a

– Dựa vào bảng xét dấu và kết luận

4. Giải bất phương trình bậc 2

– Giải bất phương trình bậc hai ax2 + bx + c 2 + bx + c cùng dấu với hệ số a (trường hợp a0).

Để giải BPT bậc hai ta áp dụng định lí về dấu của tam thức bậc hai.

5. Một số dạng toán thường gặp

Dạng 1: Giải bất phương trình bậc hai.

Phương pháp:

- Bước 1: Biến đổi bất phương trình về dạng một vế là tam thức bậc hai, một vế bằng 0.

- Bước 2: Xét dấu vế trái của tam thức bậc hai và kết luận nghiệm.

Dạng 2: Giải bất phương trình tích.

Xem thêm: Là Gì? Nghĩa Của Từ Prize Là Gì ? Nghĩa Của Từ Prize Trong Tiếng Việt

Phương pháp:

- Bước 1: Biến đổi bất phương trình về dạng tích các nhị thức bậc nhất và tam thức bậc hai.

- Bước 2: Xét dấu các nhị thức bậc nhất và tam thức bậc hai ở trên và kết luận nghiệm.

Dạng 3: Giải bất phương trình chứa ẩn ở mẫu

Phương pháp:

- Bước 1: Biến đổi bất phương trình đã cho về dạng tích, thương các nhị thức bậc nhất và tam thức bậc hai.

- Bước 2: Xét dấu các nhị thức bậc nhất và tam thức bậc hai ở trên và kết luận nghiệm.

Chú ý: Cần chú ý điều kiện xác định của bất phương trình.

Dạng 4: Tìm điều kiện của tham số để bất phương trình vô nghiệm – có nghiệm – nghiệm đúng

Phương pháp:

Sử dụng một số tính chất:

- Nếu ΔDạng 5: Giải hệ bất phương trình bậc hai

Phương pháp:

- Bước 1: Giải từng bất phương trình có trong hệ.

- Bước 2: Kết hợp nghiệm và kết luận.

6. Bài tập tham khảo có hướng dẫn

Bài 1: Tìm m để bất phương trình x2 - 2(m + 1) + m2 + 2m ≤ 0 có nghiệm với mọi x ∈ <0; 1>

Hướng dẫn giải:

Đặt x2 - 2(m + 1) + m2 + 2m ≤ 0

Vậy bất phương trình có nghiệm đúng với ∀x ∈ <0; 1>

Phương trình f(x) = 0 có hai nghiệm thỏa mãn

*

Vậy với -1 ≤ m ≤ 0 thỏa mãn điều kiện đề bài cho.

Bài 2: Tìm m để bất phương trình sau (m + 2)x2 - 2mx + m2 + 2m ≤ 0 có nghiệm.

Hướng dẫn giải

Xét 3 trường hợp:

- Trường hợp 1: Với m + 2 = 0 ⇒ m = -2 ta được:

(1) ⇔ 4x + 4 0 ⇒ m > -2. Khi đó bất phương trình đã cho có nghiệm thì vế trái phải có 2 nghiệm phân biệt :

m > √2 và -2 2x + 3 Hướng dẫn giải:

Bất phương trình tương đương với: m2x - mx 2 - m)x 2 - m = 0 ⇔m = {0;1} thì bất phương trình trở thành 0

*

Vậy bất phương trình có nghiệm với mọi giá trị thực của m.

Bài 4: Tìm tham số m để bất phương trình: f(x) = (m2 + 1)x2 + (2m - 1)x - 5 Hướng dẫn giải:

Ta có:

*

Vậy để bất phương trình có nghiệm đúng với mọi x thuộc khoảng ( -1, 1) thì m ∈ (-1; √6 - 1)

Bài viết liên quan

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *